Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy: a PET study with [11C]acetate in humans
نویسندگان
چکیده
In patients with impaired liver function and hepatic encephalopathy (HE), consistent elevations of blood ammonia concentration suggest a crucial role in the pathogenesis of HE. Ammonia and acetate are metabolized in brain both primarily in astrocytes. Here, we used dynamic [(11)C]acetate PET of the brain to measure the contribution of astrocytes to the previously observed reduction of brain oxidative metabolism in patients with liver cirrhosis and HE, compared to patients with cirrhosis without HE, and to healthy subjects. We used a new kinetic model to estimate uptake from blood to astrocytes and astrocyte metabolism of [(11)C]acetate. No significant differences of the rate constant of oxidation of [(11)C]acetate (k 3) were found among the three groups of subjects. The net metabolic clearance of [(11)C]acetate from blood was lower in the group of patients with cirrhosis and HE than in the group of healthy subjects (P < 0.05), which we interpret to be an effect of reduced cerebral blood flow rather than a reflection of low [(11)C]acetate metabolism. We conclude that the characteristic decline of whole-brain oxidative metabolism in patients with cirrhosis with HE is not due to malfunction of oxidative metabolism in astrocytes. Thus, the observed decline of brain oxidative metabolism implicates changes of neurons and their energy turnover in patients with HE.
منابع مشابه
Evaluation of 11C-Acetate and 18 F-FDG PET/CT in mouse multidrug resistance gene-2 deficient mouse model of hepatocellular carcinoma
BACKGROUND Hepatocellular carcinoma (HCC) remains a global health problem with unique diagnostic and therapeutic challenges, including difficulties in identifying the highest risk patients. Previous work from our lab has established the murine multidrug resistance-2 mouse (MDR2) model of HCC as a reasonable preclinical model that parallels the changes seen in human inflammatory associated HCC. ...
متن کاملRadiosynthesis of 11C-phenytoin Using a DEGDEE Solvent for Clinical PET Studies
Objective(s): Phenytoin is an antiepileptic drug that is used worldwide. The whole-body pharmacokinetics of this drug have been extensively studied using 11C-phenytoin in small animals. However, because of the limited production amounts that are presently available, clinical 11C-phenytoin PET studies to examine the pharmacokinetics of phenytoin in humans have not yet been performed. We aimed to...
متن کاملBrown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans.
Brown adipose tissue (BAT) is vital for proper thermogenesis during cold exposure in rodents, but until recently its presence in adult humans and its contribution to human metabolism were thought to be minimal or insignificant. Recent studies using PET with 18F-fluorodeoxyglucose (18FDG) have shown the presence of BAT in adult humans. However, whether BAT contributes to cold-induced nonshiverin...
متن کاملCerebral benzodiazepine receptor binding in vivo in patients with recurrent hepatic encephalopathy.
Increased activation of the central benzodiazepine receptor (BZR) appears to play an important role in hepatic encephalopathy (HE). However, there is controversy regarding whether the density or affinity of BZRs is altered. A previous positron emission tomography (PET) study using the BZR antagonist [11C]flumazenil (FMZ) found two- to threefold greater cerebral cortical tracer uptake in recurre...
متن کامل11C-Acetate PET Imaging in Patients with Multiple Sclerosis
BACKGROUND Activation of glial cells is a cardinal feature in multiple sclerosis (MS) pathology, and acetate has been reported to be selectively uptaken by astrocytes in the CNS. The aim of this study was to investigate the efficacy of PET with (11)C-acetate for MS diagnosis. MATERIALS AND METHODS Six patients with relapsing-remitting MS and 6 healthy volunteers (HV) were enrolled. The (11)C-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014